Bernstein Approximations of Dirichlet Problems for Elliptic Operators on the Plane
نویسنده
چکیده
We study the finitely dimensional approximations of the elliptic problem (Lu)(x, y) + φ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω u(x, y) = 0 for (x, y) ∈ ∂Ω, defined for a smooth bounded domain Ω on a plane. The approximations are derived from Bernstein polynomials on a triangle or on a rectangle containing Ω. We deal with approximations of global bifurcation branches of nontrivial solutions as well as certain existence facts.
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملDifference Analogues of Quasi - Linear Elliptic Dirichlet Problems with Mixed Derivatives
In this paper we consider a class of difference approximations to the Dirichlet problem for second-order quasi-linear elliptic operators with mixed derivative terms. The main result is that for this class of discretizations and bounded g (the right-hand side) a solution to the difference equations exists. We also explicitly exhibit a discretization of this type for a class of operators.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کامل